
Experiment Management and 
Reproducibility

Carson Woods, Derek Schafer, Tony Skjellum

The University of Tennessee at Chattanooga

2021



Background

Many causes of non-reproducible behavior in experiments:
• Unintentional:

• Different environment (different module files loaded, variances between user software 
environments, etc.)

• Variance in data input (deliberate/accidental changes that have gone untracked)
• And many more… 

• Intentional: 
• Running the same experiment on different machines/architectures/software environments. 
• Malevolent changing of inputs/outputs to fit desired results



Spack – reproducible software stacks

• The good:
o Package specs, hash, variants, etc. 

▪ Spec specific hash that changes when a package changes (useful on single system)
▪ Portable package specs

o Build-level control: 
▪ installs each package from source 
▪ offers near complete control over a package’s build time options, version, dependency version, and compiler flags. 

o Spack environments: portably reproducing a software environment that “just works” in the best-case scenario
• The bad:

o Not entirely reproducible
▪ Not every package is available on every system
▪ Spack will often take certain liberties when installing software 
▪ Existing environment variables can bleed into Spack’s package installs which can cause inconsistencies that are hard to 

identify
o Environments often don’t “just work” when using non-default configurations of some packages



Spack – global environments

• Spack was designed with a single user in mind
• Actively working to adopt Spack for use with teams, sites, and projects

o Users can build against Spack packages that were installed by a system administrator
o Can allow for quicker iterations of a software environment, without worrying about making the same 

software available to everyone 
o Aims to be included in the next major Spack release

• More details in:
o Woods, Carson, Curry, Matthew L., & Skjellum, Anthony. (2019). Implementing a Common HPC Environment in a Multi-User Spack Instance. 

Presented at the SC19 (HPCSYSPROS19), Denver, CO: Zenodo. http://doi.org/10.5281/zenodo.3525373



Runtime Environment Capture (REC)

• Current operates as a python script wrapper around an existing command:
o python rec.py [rec_arguments] [script]

• Current state of REC: 
o Captures start time / end time of job
o Supports various methods of job launching (cli, shell, slurm, sge, etc.)
o Captures launcher and launcher version
o Captures executables included in scripts and their self-reported versions
o Captures SHA256 hash of input script/command 
o Captures stdout



REC – Future Work

• Short Term Goals
o Application refactor
o Improved failure detection
o Spack environment integration
o User environment capture
o Library capture: capturing name/version of libraries that executables link against

• Long Term Goals
o Profiling tools (perf, strace, OpenXDMoD, etc.)
o Ptrace
o Input/output tracking
o Better job launcher integration
o Better diff utility for reproducibility reports



Conclusions

• There are many existing tools that can assist with reproducibility
o Not built for use in ensuring reproducibility
o Complex and implementing all of them can add significant overhead

• REC attempts to facilitate this by bringing together these existing tools together in a customizable and 
lightweight wrapper around existing experiment workflows
o Minimal overhead with little to no “invasive” changes needed
o No containers required 



Questions?


